Sustainable electrocatalysts for ethanol oxidation

The replacement of fossil fuel with sustainable alternatives free from environmental footprint is one of the most important challenges to combat climate change and meet the ever increasing energy demand of our planet. The sustainable production of hydrogen fuel through biomass-derived ethanol in Direct Ethanol Fuel Cells is a promising route, but the high costs and short lifecycle of platinum – which is still the preferred catalyst – are a serious problem. So, the quest to valid yet convenient substitutes to platinum is an open and challenging task.

We (actually, my experimental colleagues) prepared an electrocatalysts for Ethanol Oxidation Reaction based on a low-cost and abundant metal oxide, namely manganese oxide. The fabrication strategy involves the growth of manganese oxide nanostructures on nickel foam scaffolds via plasma-assisted chemical vapor deposition and the functionalization with gold nanoparticles in low amount – as sketched in the picture below. That’s the magic of molecule-to-nanomaterials conversion!

The synthesized nanostructures have large surface area and show great performances as electrocatalysts in the ethanol oxidation reaction, comparing favourably with the best oxide-based catalysts known to date. We found that a very tiny amount of gold nanoparticles is sufficient to boost the catalytic activity of manganese oxide.

Our findings not only afford a convenient route for sustainable electrocatalysts, but also explain why our catalyst is so efficient. Theoretical modeling (#compchem) showed that gold nanoparticles activate the oxide surface toward the ethanol oxidation reaction. In other words, ethanol undergoes both partial oxidation and deprotonation immediately upon adsorption on the catalyst. Hence, our catalyst optimally prepares ethanol to the electrochemical oxidation process.

This knowledge, combined with the proposed fabrication route, may guide the development of electrocatalysts based on earth-abundant metal-oxides for ethanol valorization in Direct Ethanol Fuel Cells and for (photo)electrochemical water splitting.

Personally, I enjoyed very much this work, because metal-metal oxides interfaces are particularly challenging to deal with by #compchem. Also, I like very much to interact with my experimental colleagues and friends: they always have interesting problems, and collaborating together to find a solution is often the best part of the work. Very happy that computational modeling may help to understand the complex behaviour of these intriguing materials!

We presented this work at the fabulous #RSCPoster conference 2021. Here’s a pdf copy of our poster.

This work was published in J. Mater. Chem. A, 2020,8, 16902. A free author version is available on Figshare

An enigmatic proton

The best superpower ever? Being invisible, of course. How nice it would be to wear a magic cloak and escape boring meetings. Too bad that these tricks work only for ghosts, magicians, and superheroes. But in the atomic world, things are different. In this realm, our superhero is the smallest atom of the simplest organic acid: the proton of the formic acid molecule.

Many green chemistry applications involve organic acids and titania. So, the reactivity of formic acid on this material has been much explored, but its acid proton has escaped the most accurate experiments so far. Where is the missing proton?

By using computational methods #compchem, we’ve seen that the proton is shared between one oxygen of the formic acid molecule and one oxygen of the titania surface. At very low temperature, sharing is governed by real superpowers quantum effects, while, at room temperature, the proton moves very fast between the molecule and the surface – to see it in action, look at the movie!  Anyway, in both cases, “sharing is caring”: it makes the acid proton “invisible” to experiments and protected from the attacks by bases.

Movie_100_7

The surface of titania acts like a protecting group for the formic acid proton. How does this work? Formic acid shares its proton with the surface, so it’s very difficult for other molecules to take it away! This protecting action of the surface could explain, for example, why carboxylic acids on titania, upon addition of amines, give high-value products (amides) at low costs for the environment.

Last_vdw_TocDiscovering the fate of the missing proton was a joy for my #compchem-ist’s eyes.  Perhaps, it might become also useful for applications: indeed, it is just the acid proton that makes carboxylic acids on titania so interesting.  Next step would be to study this process on different surfaces of titanium dioxide. This could help to understand how defects affect the reactivity of the acid proton.

On a personal note, my feeling is that our work has unveiled just a small part of the wonderful things that molecules can do on surfaces. But it’s so nice to find, from time to time, a little pearl in a shell.

coversimple2Thanks @andrea_stangoni for designing such a marvelous artwork, thanks @angew_chem for this great honor, and for your lovely “sharing is caring” pun. We’re grateful to @ChemRXiv for hosting our preprint, all the people giving feedback on it, and the reviewers of the paper. No external funders to thank, this time. Instead, we send love to our old #compchem machines – the resources of a tiny group from a little institution planet in the Galactic Empire’s periphery.

The pearl in a shell also reminds me of a mollusc without shell. Along its 4y+ life, our project has faced abundant failures and rejections – yes, the familiar “been done already, nothing new, not worth financing” story,  plus “simulations are, at best, an useful add“. No protective shell, and no Harry Potter’s cloak in those days. Yet, all those failures, critical comments, and rejections – even the most painful ones – prompted us to sit back and ponder previoulsy unseen aspects of the problem – and then, to work harder and deepen the analysis. This improved our work considerably.  Also, posting a preprint on ChemRxiv gave us strong moral support during the final stages of the work. 

We’ve all been there – things don’t always go as planned, and often let us down. But muggle tricks like persistence, faith, and time to cleanse mind and body spent on Twitter help a lot. My message? Keep calm and don’t give up: as someone else has said,  Hard times come, hard times go, yeah just to come again“.