Porous materials, minerals and bees

Overwhelmed with the increasing flow of new scientific discoveries and related literature? You’re not alone. We live in the information overload era: too much to read, too little time, and life is short. Probably we’d need more readable, shorter papers too. Why writing a long one? Perhaps, it might connect disciplines which speak different languages but have much in common. Like material science and mineral science.

Let’s start from the first one.

You can make materials for solar cells, optical devices or medical sensors by trapping molecules or nanoparticles inside a “host”. Once there, molecules are no longer free to move, like in a gas or a liquid.  This process, called “confinement”, brings to life new properties, which were not present in the individual molecules and are very useful in technology.  Energy transfer or information storage, for instance, are made possible by the organization of the confined molecules

P1270522
The regular cavities of zeolites do a great job in organizing guest molecules

Tiny smart objects such as molecular machines, motors and diodes, make good use of self-organization processes, which create order from apparent disorder by exploiting interactions between molecules. This task gets easier when molecules are confined in regular pores. Think of a buzzing swarm of bees, first frantically hovering in the air, and then accommodated in a honeycomb.

Similar to honeycombs, regular patterns of pores like those in zeolites can orderly accomodate small molecules or clusters. But if you want to entrap, say, enzymes, peptides, or large nanoparticles, you must use materials with larger pores. Some porous silicas have large honeycomb channels, while the cavities of metal organic frameworks display an amazing variety of size and shape. With those nice architectures awaiting to be filled, ordering molecules might appear like an easy task.

As you imagine, things are more complex. Perfect order cannot be achieved. All cavities would need to be uniformly occupied by the guests. This is going to be very unlikely, because molecules move a lot even when they’re confined… like bees in a hive.

front_low_res
Molecules in nanocavities are sort of like bees in a honeycomb: they form an organized colony (Artwork: Andrea Stangoni)

About bees, I had direct experience… as a child, I used to observe my dad opening up his hives to inspect them. This gave me the chance to “study” the behaviour of these awesome creatures inside their honeycomb.

Bees do not occupy all hexagonal holes in the frame, and move continuously around, without any apparent pattern. Hence they’re not perfectly ordered. In spite of this, the colony is amazingly organized, and performs an impressive number of complex tasks…. not just honey production!

Similarly, guest molecules confined in porous cages are not rigorously ordered. Yet they are organized, and the resulting host-guest materials can perform useful functions, which were absent in the free molecules. They can, for example, absorb and transfer photons like the antenna systems of plants and bacteria.

Now, the question is: can we improve the organization of the molecules and the performances of the materials? Well, first we should know how the molecules occupy the cavities, their orientation, spacing and so on. Are the guests aligned? Are they attached to the pore walls? What happens if water enters the pores? To find those answers, you should use several different techniques: each experiment will give you some pieces to compose the puzzle. And yes, computational chemistry helps a lot to figure our what happens inside the pores. Yet this remains a very difficult problem.

This is where mineral science might help.

Regular patterns of cages are very common in the mineral world. Not long ago, for example, geologists found in Antartica a mineral with the same structure of zeolite Z-SM5, a well-known and widely used artificial industrial catalyst. That was indeed a big surprise! Natural zeolites are indeed amazing: their pores contain impressively stable structures formed by small molecules and cations. Just look at this water wire:

Wchain
Water wire found in the channels of a natural zeolite

Contrary to what you’d expect, this chain is incredibly resistant to heat and pressure. First found in a rare mineral, it was named “one-dimensional ice”. But actually, our water wire “melts” at about 340 C inside the mineral framework!  This is a great example of organized structure made by Nature. You can find many others: the most famous ones are perhaps gas hydrates. Several silica minerals have hydrate structures, which are also very common in man-made porous materials. Indeed, we should pay more attention to the close links between natural and artificial host-guest materials.

Natural porous minerals, the intriguing organization of their guests, and their response to mechanical stress can be an awesome source of inspiration in the quest of more robust and efficient materials. High pressure experiments with zeolites (and also some MOF’s) have already brought us new organized materials, along with many curious facts.  But there’s so much yet to be discovered.

Perhaps, the problem with us (me included) and with our scientific era is that we don’t take enough time to relate with other disciplines. I’ve been so lucky to work with many awesome colleagues from the mineral, chemical and material science communities over the years, and it’s thanks to them that I wrote this review. One thing I learnt is that we should always try building bridges and strenghtening links between different fields because there’s nothing to lose, all to gain from a deeper exchange of ideas.

For more information….

 

RSC Twitter conference 2018

The Twitter Poster Conference is an annual event organized by the Royal Society of Chemistry, which consists of sharing chemical research using tweets. You may take part either by tweeting an image of your poster or by commenting on other poster (doing both is better, in my view). As in a traditional conference, you see great research, are asked interesting questions, meet old friends, and come in contact with new colleagues or potential collaborators. Only, at the twitter conference this happens 24 hours non-stop  on global scale; so, it’s a good idea to get there prepared!

I enjoyed so much my 2017 participation that I couldn’t miss the 2018 edition.  Of course, it was awesome, and I am grateful to the organizers, the sessions’ chairs, and all participants, particularly those with whom I interacted.  Indeed, I have learnt new stuff, seen exciting science, been inspired, without moving from my office and paying any conference fees. Really cannot ask for more. Many thanks to all of you!

Tweeting posters is not trivial. For optimal readability,  you should keep into account, for example,  that mobile phones have small screens, and that Twitter images are resized and cropped down – so, it would be better to prepare the poster in landscape format. These and other useful tips can be found in this excellent post. I came across it when the event was over, but it would surely be useful in the future.

Below you can find my poster, illustrating the fruitful collaboration between calculations and diffraction experiments at high-pressure conditions.

Besides water and ethanol in ferrierite (discussed in this post), the poster shows our new work on a host-guest compound of zeolite L and fluorenone dye under high pressure. These host-guest materials have excellent optical properties, useful for many applications, from solar cells to sensing in medical technology. Knowing their structure and working principles could help improve their performances – that’s why we try so hard to understand dye-zeolite composites at molecular level.

Basically fluorenone inside the channels of zeolite L forms a molecular ladder, which is very stable at room conditions because the carbonyl groups of the dye interact very strongly with the potassium cations of the zeolite.

Is this peculiar structure also stable under GPa pressures?

According to experiments and simulations, the answer is apparently yes!  Our composite  maintains its structure, and the interactions between the dye and the zeolite cations become stronger. The exceptional resilience of this material to compression highlights its outstanding mechanical properties. These are important to extend the application of dye-zeolite composites beyond room-pressure conditions.

More about this research can be found in this recently published paper (“Unravelling the High-Pressure Behaviour of Dye-Zeolite L Hybrid Materials”) – which is open access. The high-resolution poster and the green open access version of the ferrierite paper can be downloaded at figshare.

 

twitter2018_3_b

High pressure and small spaces create order from disorder

Our work on ethanol and water in ferrierite, published here and blogged in my previous post,  has been recently covered by MRS Bulletin in an excellent news article – “High pressure and small spaces create order from disorder”  by science writer Tim Palucka. Some time ago, I had a very pleasant communication with Tim about the main ideas and results of the paper. That interview also helped me a lot to understand how science communication is done professionally. The piece by Tim really does a great job in explaining the scientific background, the main findings and the perspectives of our research – and, of course, all of us are so happy about it!

MRS Bulletin contains other interesting news articles, which are very useful to get a first impression about what’s going on in the many diverse areas of materials science –  we’re very proud to be featured there! Big thanks, therefore, to MRS Bulletin and Dr. Palucka for the awesome coverage, and to Prof. Gion Calzaferri for commenting on our work as an external expert. A pdf version of the news article is freely available at MRS Bulletin (Volume 42, Issue 3, pp. 176-177, DOI: https://doi.org/10.1557/mrs.2017.38 ), while the illustration showing the arrangement of water and ethanol in the zeolite is just here below:
mrs_42_3_175-179-March17.indd

Many thanks also to my institution, @Uni_ Insubria, for issuing a piece on our research and sharing it on the social media. The Uni_Insubria release – including also an English translation, can be found at this Facebook link  (Italian version also at: Chemistry & Earth Science Department of Uni Modena-Reggio Emilia – that we thank as well).